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Abstract
A long-standing problem in condensed matter physics concerns the nature of the critical wetting
phase transition in the Ising model or, more generally, in 3D systems with short-ranged forces.
This is of fundamental interest because 3D corresponds to the upper critical dimension of the
transition and it is not clear a priori whether the behaviour of the system will be mean-field-like
or fluctuation-dominated. Renormalization group studies of the standard coarse-grained
effective interfacial Hamiltonian model famously predict strong non-universal critical
exponents which depend on the value of the so-called wetting parameter ω. However, these
predictions are at odds with extensive Monte Carlo simulations of wetting in the Ising model,
due to Binder, Landau and coworkers, which appear to be more mean-field-like. Further
amendments to the interfacial Hamiltonian, which included the presence of a
position-dependent stiffness, worsened the problem by paradoxically predicting
fluctuation-induced first-order wetting behaviour.

Here we show from re-analysis of a microscopic Landau–Ginzburg–Wilson model of 3D
short-ranged wetting that correlation functions are characterized by two diverging parallel
length scales, not one, as previously thought. This has a simple diagrammatic explanation using
a non-local interfacial Hamiltonian and yields a thermodynamically consistent theory of wetting
in keeping with exact sum rules. The non-local model crucially contains long-ranged two-body
interfacial interactions, characterized by the new length scale, which were missing in earlier
treatments. For critical wetting the second length cuts off the spectrum of interfacial fluctuations
determining the repulsion from the wall. We show how this corrects previous renormalization
group predictions for fluctuation effects, based on local interfacial Hamiltonians. In particular,
lowering the cut-off leads to a substantial reduction in the effective value of the wetting
parameter controlling the non-universality and also prevents the transition being driven
first-order. Quantitative comparison with the Ising model simulation studies is also made.

(Some figures in this article are in colour only in the electronic version)

New phase behaviour emerges when a system (fluid, magnet,
superconductor, etc) is geometrically confined. Perhaps the
most important example is the wetting transition, which occurs
when one of two coexisting phases α and β (think up-
spin/down-spin or liquid/vapour) is energetically preferred
by the confining walls of the system [1]. Far from
being a technical detail, the wetting transition has deep
implications since it is intrinsically linked to the vanishing
of the contact angle formed by a drop of one of the

phases, and plays a crucial role in nanotechnology. From a
theoretical perspective, the wetting transition is of fundamental
interest since fluctuation effects associated with the thermal
excitation of long-wavelength, capillary-wave-like modes of
the unbinding interface may have a profound influence on
critical singularities.

Imagine bringing a planar wall in contact with a bulk
phase α. In general, a microscopic layer of the preferred
phase β will intrude between the wall and the α phase.
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At a wetting transition [2, 3], the thickness of this layer
� diverges, i.e. becomes macroscopic. This situation
occurs on approaching two-phase coexistence and the wetting
temperature Tw, and may be first-order or continuous (critical
wetting). Alternatively, the divergence of � on approaching
two-phase coexistence for T > Tw is termed complete
wetting (see figure 1). As the film thickens, a fluid interface
between phases α and β is subject to increasingly large
fluctuations characterized by parallel ξ‖ and perpendicular
ξ⊥ correlation lengths. For critical and complete wetting,
these length scales diverge continuously and are described
by critical exponents [1]. It turns out that the upper critical
dimension for both these transitions is d = 3 for systems
with short-ranged forces, i.e. for d > 3, the critical exponents
take their classical values, as determined by mean-field (MF)
theory, while for d < 3 they are fluctuation-dominated.
Predicting what will happen exactly at the upper critical
dimension is a stringent test for theory and it is here that the
interest and ensuing controversy concerning critical wetting
begins [4]. Renormalization group (RG) studies of critical
wetting based on the standard, coarse-grained, interfacial
Hamiltonian predict strong non-universality in which critical
exponents depend on the wetting parameter

ω = kBT/4π�ξ 2 (1)

where � is the interfacial stiffness and ξ is the correlation
length of the bulk β phase [5]. For example, the divergence
of the parallel correlation length along path (C) is given by
ξ‖ ∼ (Tw − T )−ν‖ , where ν‖(ω) = (1 − ω)−1 for ω < 1/2
and ν‖(ω) = (

√
2 − √

ω)−2 for 1/2 < ω < 2. The ideal
testing ground for these predictions is the Ising model for
which independent studies have accurately estimated ω ≈ 0.8
close to Tc [6], suggesting ν‖ ≈ 3.7, much larger than the MF
value ν‖ = 1. In sharp contrast to this, extensive simulation
studies by Binder et al [7] found only minor deviations from
MF theory, attributable to a much smaller effective value
ωeff ≈ 0.27 ± 0.12, lying somewhere between MF and RG
expectations [8]. Unfortunately, early attempts to explain
this discrepancy failed and the situation was confounded by
a further refinement of the model due to Fisher and Jin [9]
who included a position-dependent stiffness in their refinement
of the interfacial model and predicted that, paradoxically,
fluctuations drive the transition first-order, in disagreement
with the qualitative findings of the simulations.

Progress has recently been made towards resolving
this problem using a non-local (NL) interfacial Hamilto-
nian [10–12]. Within this description, the energetic binding
between the interface and the wall is represented diagrammat-
ically:

W = a1 + b1 + · · · (2)

and may be visualized arising from tube-like fluctuations that
zigzag between the surfaces. Numerical and renormalization
group (RG) studies of critical wetting using this NL
Hamiltonian [10] are in better agreement with the Ising
model simulations [7, 8]. However, the fundamental physical
mechanism behind this agreement has remained obscure.
Here we show that non-locality explains the existence of

Figure 1. Surface phase diagram with a critical wetting transition at
Tw (thermodynamic paths (B) and (C)) and complete wetting (path
(A)). The bulk ordering field is denoted h while Tc is the critical
temperature.

a new diverging length scale, previously overlooked in the
phenomenology of wetting but which is present in more
microscopic theories. This leads to a breakdown of simple
scaling and provides a mechanism by which the effective value
of ω is reduced.

To begin, we return to the starting point of wetting
theory and, using a magnetic notation, consider a microscopic
Landau–Ginzburg–Wilson model [2, 3]

H[m] =
∫

dr{ 1
2 (∇m)2 + φ(m)} (3)

which has a bounding wall in the z = 0 plane. A potential
φ(m) describes the coexistence of bulk phases α and β where,
in zero field, mβ = −mα = m0. The bulk ordering field
h � 0 so the bulk phase is α. Minimization of (3) determines
the MF equilibrium profile 〈m〉 = m(z). With a fixed wall
magnetization m = m1 > 0, the model exhibits critical wetting
when m1 = m0(Tw), leading to the phase diagram figure 1.

Next consider the correlation function G(r1, r2) =
〈m(r1)m(r2)〉 − 〈m(r1)〉〈m(r2)〉 and its transverse Fourier
transform (FT) G, which, at MF level, satisfies

(−∂2
z1

+ φ′′(m(z1)) + q2) G(z1, z2; q) = δ(z1 − z2) (4)

where we have set kBT = 1. This can be solved within
the double-parabola (DP) approximation φ(m) = κ2(|m|−
m0)

2/2 − hm which is known to describe the physics of
continuous wetting transitions [12]. Here, κ is the inverse
bulk correlation length. Within the DP approximation, the
MF thickness (defined as m(�) = 0) is κ� ≈ ln(−t/2 +√

t2/4 − h̃), where t ≡ m1/m0 − 1 and h̃ ≡ h/(m0κ
2) are

dimensionless scaling fields. This displays the well-known
logarithmic divergences of � at critical and complete wetting.
The result for G = Gsing + Greg separates conveniently into
singular and regular parts. The regular part contains no
diverging length scales and can be identified as the structure
factor of a film of β-like phase with fixed magnetization
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Figure 2. Wetting diagram and its algebraic expression.

boundary conditions m(0) = m1 and m(�) = 0 at both sides.
The singular term is

Gsing(z1, z2; q) = �(z1; q)�(z2; q)

E(�; q)
(5)

where, in the relevant long-wavelength limit (q � κ),
�(z, q) ≈ m0κe−κq (�−z) and

E(�; q) ≈ 2m0κ |h| + 2m2
0κ

3e−2κ�e−q2�/κ + σαβq2. (6)

Here, κq = √
κ2 + q2 and σαβ = m2

0κ is the DP result
for the interfacial tension/stiffness. It is clear from (5)
that the correlation function is determined by two diverging
transverse length scales; the parallel correlation length ξ‖ =
(σαβ/E(�; 0))1/2 and also a second length ξNL = (�/κ)1/2. For
example, in the approach to critical wetting at h = 0− (path
(C)) and near the interface:

G(�, �; q) ≈ G(�, �; 0)

e−q2 ξ 2
NL + q2 ξ 2

‖
(7)

where G(�, �; 0) = κ2 m2
0 ξ 2

‖ /σαβ , while near the wall

Gsing(0, 0; q) ≈ 1

2κ

e−q2 ξ 2
NL

e−q2 ξ 2
NL + q2 ξ 2

‖
. (8)

Importantly, the singular contribution to G near the wall is
dampened strongly when q > ξNL

−1. This damping factor also
emerges beyond the DP approximation. The existence of two
diverging transverse length scales corresponds to a breakdown
of simple scaling and sheds new light on two long-standing
puzzles for complete and critical wetting.

All the above is captured by the NL model, which
describes wetting both for planar and non-planar walls [11]. A
collective coordinate �(x) denotes the location of a surface of
iso-magnetization m(r�) = 0, where r� = (x, �) is an arbitrary
point on the interface. A trace over irrelevant fluctuations
identifies H [�] = H[m�] [9], where m�(r) is the profile that
minimizes (3) subject to the boundary conditions. For the DP
potential

m�(r) − mβ = −mβ

(
− + · · ·

)

+ (m1 − mβ)
(

− + · · ·
)

(9)

where the thick straight line denotes the Green’s function
K (r) = κ e−κ r/2πr and the wavy lines represent the
interfacial configuration (top) and wall (bottom). A black

Figure 3. Effective value of the wetting parameter as a function of
the wetting thickness. Simulations of the discretized local (triangles)
and non-local (circles) interfacial models were performed on an
L × L grid. Here L is measured in units of 3.1623/κ [10]. The thick
lines are guides for the eye. The continuous and dashed lines are
predictions of the continuum approximation (17) for different �. The
value of ωeff obtained from Ising model simulations [8] is also shown
(square).

dot on a surface means one must integrate over all points on
that surface with the appropriate infinitesimal area element
(figure 2). The NL Hamiltonian is

H [�] = σαβ Aαβ + 2m0|h|Vβ + WNL[�] (10)

where Aαβ , Vβ are the interfacial area and the volume of the β

layer, respectively, and WNL[�] is given in (2). The geometry-
independent coefficients are a1 = 2tσαβ, b1 = σαβ . The
structure of WNL is largely unchanged beyond DP and when
coupling to a surface field is allowed, although the values of
a1, b1 are slightly altered [12]. When the interface and wall are
planar, WNL[�] = Aαβ W (�), where W (�) = a1e−κ� + b1e−2κ�

is the usual binding potential function [4]. For more general
interfacial configurations, the diagrams further simplify to

=
∫

ds e−κ� (11)

=
∫ ∫

ds1 ds2 e−2κ �̄ S( x12 ; �̄) (12)

where �̄ ≡ (�(x1) + �(x1))/2 and ds is the appropriate
infinitesimal area element at the interface. Here

S(x; �) = 1

4πξ 2
NL

e−x2/4ξ 2
NL (13)

is an effective two-body interfacial interaction whose range
is the new length scale ξNL discussed earlier. It is natural to
interpret ξNL ∝ �1/2 as the rms width arising from the thermal
wandering of a tube of length �.

The MF expression for Gsing can be recovered from the
interfacial correlation function 〈δ�(x1)δ�(x2)〉, where δ� ≡
� − 〈�〉. Using the constrained profile (9) to reconstruct
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magnetization correlations, we are led to the diagrammatic
formula

Gsing(r1, r2)

m2
0

= ∂2
z1z2

. (14)

Here, the horizontal lines denote the equilibrium MF positions
of the interface and wall, while the thick line and open/black
dots are as before. The wiggly line represents 〈δ�(x1)δ�(x2)〉
and, therefore, shows magnetization correlations arising from
the interaction between tubes and capillary waves. The
transverse FT of equation (14) leads to the same expression
for Gsing obtained in the Landau theory, equation (5). This
demonstrates its robustness beyond the DP approximation.
The standard local interfacial theory is recovered when one
approximates ξNL ≈ 0.

We are now in a position to re-examine two long-standing
problems of wetting theory. For complete wetting (path (A) in
figure 1), the correlation function near the wall is

Gsing(0, 0; q) ∝ h2

2m0κ |h| + σαβq2
e−q2ξ 2

NL (15)

which remains valid beyond MF. Expanding in powers of
q2, including the exponential damping term, we identify the
second moment G2(0, 0) ∝ σαβ + σsing which contains
correctly both the αβ and the singular contributions σsing ∼
h ln |h| to the total surface tension of the wall–α interface.
The presence of these two terms is an exact sum-rule
requirement [13] which is known to be breached by the
standard interfacial model of wetting. Non-locality and the
consequent existence of the new length scale ξNL offer a fully
consistent solution to this problem.

Armed with these insights, we now return to the problem
of non-universality at critical wetting. The key observation
here is that ξNL serves to cut-off the spectrum of interfacial
interactions that control the repulsion from the wall. This
is already present in the LGW model results (7) and (8) for
the MF correlation function. For instance, near the interface
and for wavevectors in the range 1/ξNL � q � κ , we find
G(�, �; q) = κ2m2

0/σαβq2 which is the same as for a free αβ

interface, independent of the presence of the wall. Similarly,
near the wall, the exponential damping kills the singular
contribution for q � 1/ξNL. All these effects can be traced to
the two-body interaction (13) controlling the repulsion. The FT
of the interaction is S̃(q) ≈ exp(−q2ξ 2

NL), which suppresses
strongly the repulsion for wavevectors q � 1/ξNL. We are
now in a position to critically re-assess previous predictions
for fluctuation effects [5, 9]: (A) if we take the ultra-long-
wavelength approximation S̃(q) ≈ 1, the diagram (12) reduces
to the local interaction

∫
dx e−2κ�, appearing in the original

interfacial theory [5]. However, this approximation is only
valid provided we restrict wavevectors to q < �NL, where
�NL ∼ 1/ξNL is an effective momentum cut-off. This contrasts
with the original assumption [5] that q < �, where � ∼
κ is the high-momentum cut-off (which remains valid for
the attractive term (11)). This implies that the renormalized
repulsion should be [14, 15]

R[e−2κ�] ≈ 1√
2πw⊥

∫ ∞

0
dt e−2κ t−(�−t)2/2w2⊥ (16)

determined by a reduced width κ2w2
⊥ = ω ln(1 +

ξ 2
‖ �2

NL). Equivalently, the wetting parameter controlling the
renormalized repulsion takes a lower effective value

ωeff

ω
≈ ln(1 + ξ 2

‖ �2
NL)

ln(1 + ξ 2
‖ �2)

, (17)

which, for thick wetting films, reduces to

ωeff = ω −
√

2ω3
ln(κ�)

κ�
+ · · · (18)

where we have assumed that ω > 1/2 as appropriate to the
Ising model. (B) The precise same mechanism prevents the
possibility of a stiffness instability subsequently predicted for
models which allow for a position-dependent stiffness [9].
Indeed, the Fisher–Jin model can be recovered explicitly from
the NL theory if we approximate S̃(q) ≈ 1 − q2ξ 2

NL [11].
Again, this is only valid for q < �NL ∼ 1/ξNL and with this
corrected cut-off the flow equations studied in [9] no longer
drive the transition first-order. There is no stiffness instability.
Thus, the NL theory preserves the Nakanishi–Fisher global
phase diagram showing first-order, critical and tri-critical
wetting [3]. All these considerations are consistent with the
more detailed analysis based on the numerical renormalization
of the two-body interaction (13) given in [10, 15].

It is this reduced value ωeff which determines the
singularities of the first-layer magnetization and susceptibility
along the critical wetting isotherm, which were studied in
simulations of the Ising model [7] and NL Hamiltonian [10]. In
figure 3, we plot ωeff versus the film thickness κ� as obtained
from simulation studies and the above theory. In the simulation
studies of the interfacial models, ωeff has been extracted
from the singularity of the surface magnetization m1 ∼
|h|1−1/2ν‖(ωeff) along the critical wetting isotherm. This is more
difficult for the Ising model and we have used the estimate
taken from the surface susceptibility critical amplitude [8].
As can be seen, the NL theory is in better agreement with
the Ising model simulation result due to the slower crossover.
Theoretical predictions for ωeff are also shown for different
values of �. This is close to the simulation findings and
substantially lower than the asymptotic critical value ω = 0.8.
It is interesting to note that, within the NL model, ωeff has a
minimum value of approximately 0.3 when the film thickness
is approximately five bulk correlation lengths. For thinner
wetting films, the effective value actually increases. Similar
qualitative behaviour is found in equation (17). Unfortunately,
in the original Ising simulation studies, this regime corresponds
to wetting layers of less than one or two lattice spacings
for which a continuum description is doubtful. However,
this limitation can be overcome in future simulations at
temperatures closer to Tc, where the bulk correlation length is
much larger.

In conclusion, we have shown that 3D short-ranged
wetting transitions are characterized by two diverging parallel
length scales, and not one, as previously thought. The new
length scale can be seen explicitly in the analytical expression
derived for the mean-field magnetization correlation function
within an LGW model. This is not accounted for in the
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original effective Hamiltonian description of wetting, but
appears naturally in the present NL description, where it
emerges from a two-body interfacial interaction. The nature
of this interaction and the new length ξNL appears to resolve
long-standing puzzles in critical wetting theory. In particular,
for critical wetting, it suppresses long-wavelength interfacial
modes, implying that critical singularities are necessarily much
closer to mean-field predictions in keeping with Ising model
simulation results.
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